Efficient Real-Time Lossless EMG Data Transmission to Monitor Pre-Term Delivery in a Medical Information System
نویسندگان
چکیده
An estimated 15 million babies are born prematurely every year worldwide, and suffer from disabilities. Appropriate care of these pre-term babies immediately after birth through telemedicine monitoring is vital. However, problems associated with a limited bandwidth and network overload due to the excessive size of the electromyography (EMG) signal impede the practical application of such medical information systems. Therefore, this research proposes an EMG uterine monitoring transmission solution (EUMTS), a lossless efficient real-time EMG transmission solution that solves such problems through efficient EMG data lossless compression. EMG data samples obtained from the Physionet PhysioBank database were used. Solution performance comparisons were conducted using Lempel-Ziv Welch (LZW) and Huffman methods, in addition to related researches. The LZW and Huffman methods showed CRs of 1.87 and 1.90, respectively, compared to 3.61 for the proposed algorithm. This was relatively high compared to related researches, even when considering that those researches were lossy whereas the proposed research was lossless. The results also showed that the proposed algorithm contributes to a reduction in battery consumption by reducing the wake-up time by 1470.6 ms. Therefore, EUMTS will contribute to providing an efficient wireless transmission environment for the prediction of pre-term delivery, enabling immediate interventions by medical professionals. Another novel point of EUMTS is that it is a lossless algorithm, which will prevent any misjudgement by clinicians because the data will not be distorted. Pre-term babies may receive point-of-care immediately after birth, preventing exposure to the development of disabilities.
منابع مشابه
Medical Image Compression Based on Region of Interest
Medical images show a great interest since it is needed in various medical applications. In order to decrease the size of medical images which are needed to be transmitted in a faster way; Region of Interest (ROI) and hybrid lossless compression techniques are applied on medical images to be compressed without losing important data. In this paper, a proposed model will be presented and assessed...
متن کاملLC-RTP (loss collection RTP): reliability for video caching in the Internet
increasing amount of audiovisual (AV) content that is offered by web sites leads to a network bandwidth and storage capacity problem. Caching is one of the techniques that can ease this problem. But even in a caching system the distribution of data (i.e. the AV content) should be bandwidth-efficient. Furthermore the delivery to the end-user must regard the restrictions implied by real-time data...
متن کاملLossless Microarray Image Compression by Hardware Array Compactor
Microarray technology is a new and powerful tool for concurrent monitoring of large number of genes expressions. Each microarray experiment produces hundreds of images. Each digital image requires a large storage space. Hence, real-time processing of these images and transmission of them necessitates efficient and custom-made lossless compression schemes. In this paper, we offer a new archi...
متن کاملReal-time acoustic tomography system and the experience of Caspian current sea monitoring
The Acoustic Tomography (AT) systems are used to monitor long-term and continuous flow in rivers, seas and oceans. One of the disadvantages of existing systems in Iran is the inability of real-time/automated measurements. In this study, by adding a raspberry Pi computer to the system and performing the required programming, it was possible to do online monitoring. The data are transferred to th...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017